Level-set inversions

Level-set inversions are a mathematical and computational tool used in inversions to determine the
shape or boundary of a subsurface body.

The core idea:

* You represent the boundary of an object not by explicitly drawing its edges but by using a higher-
dimensional function called a level-set function.

* The object is defined implicitly as all points where this function equals zero.

* During inversion, you adjust the level-set function to minimize the mismatch between observed data
(gravity, magnetic or seismic) and predictions from a physical model.

¢ As the function evolves, its zero-level set morphs naturally into complex shapes, even splitting or
merging if needed.

Why is this great?

e It handles topological changes gracefully

e |t focuses the inversion effort on the geometry rather than detailed property values.

¢ It meshes nicely with regularization and prior information.

The Scenario

Suppose we’re mapping a region where sedimentary rocks (light and non-magnetic) blanket an
intrusive body (dense and magnetic). Gravity data suggests extra mass. Magnetic data that there’s a
body with strong magnetization. But we don’t know its shape, only its effects.

Level-Set Inversion

We introduce a level-set function, let’s call it ¢(x). Wherever ¢(x) > 0, we assume intrusive rock with
high density and high susceptibility. Wherever ¢(x) < 0, we assume the surrounding sediments with
lower properties. The zero contour of ¢(x) represents the unknown geological boundary.

We forward model gravity and magnetic fields based on the current ¢-defined geometry and compare
them to our measured anomalies. If the mismatch (misfit) is high, our model is wrong. Gradient-based
optimization nudges ¢(x) to reduce the error, reshaping the boundary.

Why This Is Powerful

Traditional voxel-based inversions might smear dense/magnetic properties everywhere. Level-set
inversion instead gives you a crisp, interpretable boundary.

Example

A joint gravity—-magnetics synthetic example. We simulate a 10x10 km survey for a dense, magnetic
intrusion (a dome + feeder dike via spheres), generate noisy gravity and magnetic “observed” data,
then show successive boundary updates (coarse-to-fine guesses) to make the synthetic data fit the
“observed” data.

Notes:

- Gravity: use point-mass approximation for spheres (valid inside the body).

- Magnetics: TMI anomaly from induced dipoles, approximating each sphere as a dipole at its centre.
- Earth's field set to a realistic mid-latitude value for the Netherlands region.

- We add realistic noise: 0.1 mGal for gravity, 5 nT for magnetics.

- "Inversion" is a sequence of 3 updates to make the synthetic data fit the “observed” data.

Observed gravity anomaly Observed magnetic TMI anomaly
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Guess 1: predicted gravity

Guess 1: gravity residual

Guess 1: predicted TMI

Guess 1: TMI residual
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In short, the density and susceptibility are assumed to be reasonably known, only the shape needs to

be determined.




