Chapman-Kolmogorov theorem.

This theorem, so far only vaguely known to me, is useful in relation to multistep probability computations in random walks, queuing theory and statistical physics. It is a fundamental property of **Markov processes** (both discrete and continuous time) that expresses the relationship between **transition probabilities** over different time intervals.

Formally, if Pij(t) is the probability that a process in state i at time 0 is in state j at time t, then:

$$P_{ij}(t+s) = \sum_k P_{ik}(t)\, P_{kj}(s)$$

Here:

- i,j,k are states.
- t,s are time intervals.
- The sum is over all possible intermediate states k.
 The probability of going from state i to j in total time t+s is the sum over all possible intermediate states k of: Probability of going from i to k in

Let's take a discrete-time Markov chain with 3 states: A,B,C.

Transition matrix for one step: P(1) probabilities going from A to A, A to B, A to C, etc Transition matrix for two steps P(2) can be calculated by multiplying the matrix by itself

$$P(1) = \begin{bmatrix} 0.5 & 0.3 & 0.2 \\ 0.4 & 0.4 & 0.2 \\ 0.1 & 0.5 & 0.4 \end{bmatrix} \qquad \begin{array}{c} \text{AA AB AC} \\ \text{BA BB BC} \\ \text{CA CB CC} \end{array} \\ P(2)) = \begin{bmatrix} 0.5 & 0.3 & 0.2 \\ 0.4 & 0.4 & 0.2 \\ 0.1 & 0.5 & 0.4 \end{bmatrix} \begin{bmatrix} 0.5 & 0.3 & 0.2 \\ 0.4 & 0.4 & 0.2 \\ 0.1 & 0.5 & 0.4 \end{bmatrix} \\ \begin{bmatrix} 0.3 & 0.3 & 0.2 \\ 0.4 & 0.4 & 0.2 \\ 0.1 & 0.5 & 0.4 \end{bmatrix} \\ \begin{bmatrix} 0.5 & 0.3 & 0.2 \\ 0.4 & 0.4 & 0.2 \\ 0.1 & 0.5 & 0.4 \end{bmatrix} \\ \begin{bmatrix} 0.5 & 0.3 & 0.2 \\ 0.4 & 0.4 & 0.2 \\ 0.1 & 0.5 & 0.4 \end{bmatrix} \\ \begin{bmatrix} 0.5 & 0.3 & 0.2 \\ 0.4 & 0.4 & 0.2 \\ 0.1 & 0.5 & 0.4 \end{bmatrix} \\ \begin{bmatrix} 0.5 & 0.3 & 0.2 \\ 0.4 & 0.4 & 0.2 \\ 0.1 & 0.5 & 0.4 \end{bmatrix} \\ \begin{bmatrix} 0.5 & 0.3 & 0.2 \\ 0.4 & 0.4 & 0.2 \\ 0.1 & 0.5 & 0.4 \end{bmatrix} \\ \begin{bmatrix} 0.5 & 0.3 & 0.2 \\ 0.4 & 0.4 & 0.2 \\ 0.1 & 0.5 & 0.4 \end{bmatrix} \\ \begin{bmatrix} 0.5 & 0.3 & 0.2 \\ 0.4 & 0.4 & 0.2 \\ 0.1 & 0.5 & 0.4 \end{bmatrix} \\ \begin{bmatrix} 0.5 & 0.3 & 0.2 \\ 0.4 & 0.4 & 0.2 \\ 0.1 & 0.5 & 0.4 \end{bmatrix} \\ \begin{bmatrix} 0.5 & 0.3 & 0.2 \\ 0.4 & 0.4 & 0.2 \\ 0.1 & 0.5 & 0.4 \end{bmatrix} \\ \begin{bmatrix} 0.5 & 0.3 & 0.2 \\ 0.4 & 0.4 & 0.2 \\ 0.1 & 0.5 & 0.4 \end{bmatrix} \\ \begin{bmatrix} 0.5 & 0.3 & 0.2 \\ 0.4 & 0.4 & 0.2 \\ 0.1 & 0.5 & 0.4 \end{bmatrix} \\ \begin{bmatrix} 0.5 & 0.3 & 0.2 \\ 0.4 & 0.4 & 0.2 \\ 0.1 & 0.5 & 0.4 \end{bmatrix} \\ \begin{bmatrix} 0.5 & 0.3 & 0.2 \\ 0.4 & 0.4 & 0.2 \\ 0.1 & 0.5 & 0.4 \end{bmatrix} \\ \begin{bmatrix} 0.5 & 0.3 & 0.2 \\ 0.4 & 0.4 & 0.2 \\ 0.1 & 0.5 & 0.4 \end{bmatrix} \\ \begin{bmatrix} 0.5 & 0.3 & 0.2 \\ 0.4 & 0.4 & 0.2 \\ 0.1 & 0.5 & 0.4 \end{bmatrix} \\ \begin{bmatrix} 0.5 & 0.3 & 0.2 \\ 0.4 & 0.4 & 0.2 \\ 0.1 & 0.5 & 0.4 \end{bmatrix} \\ \begin{bmatrix} 0.5 & 0.3 & 0.2 \\ 0.4 & 0.4 & 0.2 \\ 0.1 & 0.5 & 0.4 \\ 0.4 & 0.4 & 0.2 \\ 0.1 & 0.5 & 0.4 \\ 0.4 & 0.4 & 0.2 \\ 0.1 & 0.5 & 0.4 \\ 0.4 & 0.4 & 0.2 \\ 0.1 & 0.5 & 0.4 \\ 0.4 & 0.4 & 0.2 \\ 0.1 & 0.5 & 0.4 \\ 0.4 & 0.4 & 0.2 \\ 0.1 & 0.5 & 0.4 \\ 0.4 & 0.4 & 0.2 \\ 0.1 & 0.5 & 0.4 \\ 0.4 & 0.4 & 0.2 \\ 0.4 & 0.4 & 0.2 \\ 0.4 & 0.4 & 0.2 \\ 0.4 & 0.4 & 0.2 \\ 0.4 & 0.4 & 0.2 \\ 0.5 & 0.3 & 0.2 \\ 0.5 & 0.5 & 0.4 \\ 0.5 & 0.5$$

Here, $P_{AB}(1)=0.3$ means: if we're in A now, there's a 30% chance of being in B next step.

Now, what's $P_{AC}(2)$ (two steps from A to C)?

Using Chapman-Kolmogorov:

$$P_{AC}(2) = P_{AA}(1)P_{AC}(1) + P_{AB}(1)P_{BC}(1) + P_{AC}(1)P_{CC}(1)$$

Plugging in:

$$P_{AC}(2) = (0.5)(0.2) + (0.3)(0.2) + (0.2)(0.4)$$

 $P_{AC}(2) = 0.10 + 0.06 + 0.08 = 0.24$

This matches exactly what you'd get by multiplying the matrix by itself:

$$P(2) = P(1) \times P(1)$$

The Chapman-Kolmogorov theorem is just this principle generalized to any time intervals.

Summary:

- ullet Statement: $P_{ij}(t+s) = \sum_k P_{ik}(t) P_{kj}(s)$
- Use: Fundamental for multi-step transitions, Markov chain analysis, and building stochastic process theory.
- Intuition: Probability of getting from i to j in t+s equals "all possible intermediate routes" via some k.

Simulating the Markov process and displayed a table comparing the **empirical two-step probabilities** with the **theoretical values** from the Chapman–Kolmogorov theorem shows an excellent approximation:

	From	То	P2_empirical	P2_theoretical
0	Α	Α	0.39011	0.39
1	Α	В	0.36775	0.37
2	Α	C	0.24214	0.24
3	В	Α	NaN	0.38
4	В	В	NaN	0.38